首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14417篇
  免费   980篇
  国内免费   1209篇
安全科学   1857篇
废物处理   734篇
环保管理   4368篇
综合类   5264篇
基础理论   1444篇
环境理论   15篇
污染及防治   761篇
评价与监测   547篇
社会与环境   1287篇
灾害及防治   329篇
  2023年   137篇
  2022年   200篇
  2021年   285篇
  2020年   387篇
  2019年   310篇
  2018年   289篇
  2017年   374篇
  2016年   505篇
  2015年   445篇
  2014年   693篇
  2013年   994篇
  2012年   864篇
  2011年   994篇
  2010年   689篇
  2009年   820篇
  2008年   643篇
  2007年   895篇
  2006年   927篇
  2005年   753篇
  2004年   741篇
  2003年   685篇
  2002年   629篇
  2001年   538篇
  2000年   556篇
  1999年   437篇
  1998年   298篇
  1997年   265篇
  1996年   204篇
  1995年   191篇
  1994年   117篇
  1993年   109篇
  1992年   81篇
  1991年   60篇
  1990年   45篇
  1989年   32篇
  1988年   37篇
  1987年   39篇
  1986年   30篇
  1985年   24篇
  1984年   30篇
  1983年   20篇
  1982年   24篇
  1981年   22篇
  1980年   31篇
  1979年   37篇
  1978年   21篇
  1975年   14篇
  1973年   16篇
  1972年   16篇
  1971年   17篇
排序方式: 共有10000条查询结果,搜索用时 437 毫秒
1.
Effective management refers to the ability of a protected area or indigenous territory to meet its objectives, particularly as they relate to the protection of biodiversity and forest cover. Effective management is achieved through a process of consolidation, which among other things requires legally protecting sites, integrating sites into land‐use planning, developing and implementing management and resource‐use plans, and securing long‐term funding to pay for recurrent costs. Effectively managing all protected areas and indigenous territories in the Amazon may be needed to avoid a deforestation tipping point beyond which regional climatic feedbacks and global climate change interact to catalyze irreversible drying and savannization of large areas. At present, protected areas and indigenous territories cover 45.5% (3.55 million km2) of the Amazon, most of the 60–70% forest cover required to maintain hydrologic and climatic function. Three independent evaluations of a long‐term large‐scale philanthropic initiative in the Amazon yielded insights into the challenges and advances toward achieving effective management of protected areas and indigenous territories. Over the life of the initiative, management of sites has improved considerably, particularly with respect to management planning and capacity building, but few sites are effectively managed and many lack sufficient long‐term financing, adequate governance, support of nongovernmental organizations, and the means to withstand economic pressures. The time and money required to complete consolidation is still poorly understood, but it is clear that philanthropic funding is critical so long as essential funding needs are not met by governments and other sources, which could be on the order of decades. Despite challenges, it is encouraging that legal protection has expanded greatly and management of sites is improving steadily. Management of protected areas in other developing countries could be informed by improvements that have occurred in Amazonian countries.  相似文献   
2.
Devils Lake is a terminal lake located in northeast North Dakota. Because of its glacial origin and accumulated salts from evaporation, the lake has a high concentration of sulfate compared to the surrounding water bodies. From 1993 to 2011, Devils Lake water levels rose by ~10 m, which flooded surrounding communities and increased the chance of an overspill to the Sheyenne River. To control the flooding, the State of North Dakota constructed two outlets to pump the lake water to the river. However, the pumped water has raised concerns about of water quality degradation and potential flooding risk of the Sheyenne River. To investigate these perceived impacts, a Soil and Water Assessment Tool (SWAT) model was developed for the Sheyenne River and it was linked to a coupled SWAT and CE‐QUAL‐W2 model that was developed for Devils Lake in a previous study. While the current outlet schedule has attempted to maintain the total river discharge within the confines of a two‐year flood (36 m3/s), our simulation from 2012 to 2018 revealed that the diversion increased the Sheyenne River sulfate concentration from an average of 125 to >750 mg/L. Furthermore, a conceptual optimization model was developed with a goal of better preserving the water quality of the Sheyenne River while effectively mitigating the flooding of Devils Lake. The optimal solution provides a “win–win” outlet management that maintains the efficiency of the outlets while reducing the Sheyenne River sulfate concentration to ≤600 mg/L.  相似文献   
3.
能源环境管理是各界关注的热点话题,也是科学研究的重要方向.以国家自然科学基金资助能源环境管理领域的科研项目为基础数据信息,本文重点分析了"十三五"期间国家自然科学基金在该领域资助项目的总体特征、研究主题和热点变化,并结合新时代科学基金资助导向提出了可能的发展趋势.主要结论包括:①能源环境管理领域面上、青年、地区等自由探索类项目的立项绝对数和学科占比均呈上升趋势,并更多向青年学者倾斜,资助强度保持稳定;②碳、能源和环境是自由探索项目中出现频率最高的热词,与之相关的研究主题随着政策等调整具有动态变化特征;③能源环境管理领域重点、重大等引导类项目和优青、杰青、创新研究群体等人才类项目不断实现突破,增速明显,学科占比优势突出;④问题导向与本土情景、理论体系和一般规律、学科交叉融合,以及市场和微观主体作用是研究选题确立与项目申请时可能需要重点关注的方向.  相似文献   
4.
Brazil hosts the largest expanse of tropical ecosystems within protected areas (PAs), which shelter biodiversity and support traditional human populations. We assessed the vulnerability to climate change of 993 terrestrial and coastal-marine Brazilian PAs by combining indicators of climatic-change hazard with indicators of PA resilience (size, native vegetation cover, and probability of climate-driven vegetation transition). This combination of indicators allows the identification of broad climate-change adaptation pathways. Seventeen PAs (20,611 km2) were highly vulnerable and located mainly in the Atlantic Forest (7 PAs), Cerrado (6), and the Amazon (4). Two hundred fifty-eight PAs (756,569 km2), located primarily in Amazonia, had a medium vulnerability. In the Amazon and western Cerrado, the projected severe climatic change and probability of climate-driven vegetation transition drove vulnerability up, despite the generally good conservation status of PAs. Over 80% of PAs of high or moderate vulnerability are managed by indigenous populations. Hence, besides the potential risks to biodiversity, the traditional knowledge and livelihoods of the people inhabiting these PAs may be threatened. In at least 870 PAs, primarily in the Atlantic Forest and Amazon, adaptation could happen with little or no intervention due to low climate-change hazard, high resilience status, or both. At least 20 PAs in the Atlantic Forest, Cerrado, and Amazonia should be targeted for stronger interventions (e.g., improvement of ecological connectivity), given their low resilience status. Despite being a first attempt to link vulnerability and adaptation in Brazilian PAs, we suggest that some of the PAs identified as highly or moderately vulnerable should be prioritized for testing potential adaptation strategies in the near future.  相似文献   
5.
采用大肠杆菌吸附-化学还原法,以大肠杆菌(ECCs)为模板、十六烷基三甲基溴化铵为保护剂、抗坏血酸为还原剂,由废含金催化剂制备金纳米线(AuNWs)。采用XRD,SEM,TEM等技术对AuNWs进行表征。研究了AuNWs对罗丹明6G(R6G)和4-巯基苯甲酸(4-MBA)的拉曼散射信号的增强效果。实验结果表明:在制备过程中加入微生物ECCs,可使金回收率提高约20百分点;当溶液pH小于4时,反应2 h后,有大量呈线状的AuNWs聚集沉降,金回收率可达99%1以上。表征结果显示,AuNWs呈多晶结构,晶格间距为0.23 nm。表面增强拉曼散射分析表明,AuNWs对R6G和4-MBA具有良好的拉曼光谱增强性能。  相似文献   
6.
RAMP I is a screening tool developed to support practitioners in screening for work-related musculoskeletal disorder risk factors related to manual handling. RAMP I, which is part of the RAMP tool, is based on research-based studies combined with expert group judgments. More than 80 practitioners participated in the development of RAMP I. The tool consists of dichotomous assessment items grouped into seven categories. Acceptable reliability was found for a majority of the assessment items for 15 practitioners who were given 1?h of training. The usability evaluation points to RAMP I being usable for screening for musculoskeletal disorder risk factors, i.e., usable for assessing risks, being usable as a decision base, having clear results and that the time needed for an assessment is acceptable. It is concluded that RAMP I is a usable tool for practitioners.  相似文献   
7.
随着遥感数据源的不断丰富,遥感技术不断提高,可以解决越来越多的水环境问题。指出了当前水生态环境管理方面的主要需求,结合目前遥感技术的发展,对国内外的水环境遥感研究进展进行综述。以湖泊富营养化监测与评估、核电站温排水遥感监测及城市黑臭水体遥感监测为案例,具体阐述遥感在水环境管理中的应用方法及成效。未来水生态环境管理发展趋势将以水污染防治为主向水污染防治和水生态修复与保护并重发展。基于此趋势,提出遥感在水生态修复的应用潜力,利于更多地方部门积极有效应用遥感技术,解决水生态环境问题。  相似文献   
8.
洪涝灾害条件下疏散交通生成预测方法   总被引:1,自引:0,他引:1  
为有助于有关部门更准确预测洪涝灾害受灾民众的疏散量,结合非集计数据和集计数据的优点,提出分区集计数据的概念,设计了受灾区域分区方法,并通过意向偏好(SP)调查法对我国居民在洪涝条件下疏散交通需求数据进行调查。在此基础上,引入BP神经网络建立基于分区集计数据的疏散交通生成预测模型。利用调查数据进行实证分析发现,所设计方法取得了较好的预测效果,鲁棒性较好,平均相对预测误差仅为1.8%,其预测效果明显优于现有的非集计和整集计模型。  相似文献   
9.
The loss of yields from agricultural production due to the presence of pests has been treated over the years with synthetic pesticides, but the use of these substances negatively affects the environment and presents health risks for consumers and animals. The development of agroecological systems using biopesticides represents a safe alternative that contributes to the reduction of agrochemical use and sustainable agriculture. Microalgae are able to biosynthesize a number of metabolites with potential biopesticidal action and can be considered potential biological agents for the control of harmful organisms to soils and plants. The present work aims to provide a critical perspective on the consequences of using synthetic pesticides, offering as an alternative the biopesticides obtained from microalgal biomass, which can be used together with the implementation of environmentally friendly agricultural systems.  相似文献   
10.
Achieving coexistence between large carnivores and humans in human-dominated landscapes (HDLs) is a key challenge for societies globally. This challenge cannot be adequately met with the current sectoral approaches to HDL governance and an academic community largely dominated by disciplinary sectors. Academia (universities and other research institutions and organizations) should take a more active role in embracing societal challenges around conservation of large carnivores in HDLs by facilitating cross-sectoral cooperation to mainstream coexistence of humans and large carnivores. Drawing on lessons from populated regions of Europe, Asia, and South America with substantial densities of large carnivores, we suggest academia should better embrace the principles and methods of sustainability sciences and create institutional spaces for the implementation of transdisciplinary curricula and projects; reflect on research approaches (i.e., disciplinary, interdisciplinary, or transdisciplinary) they apply and how their outcomes could aid leveraging institutional transformations for mainstreaming; and engage with various institutions and stakeholder groups to create novel institutional structures that can respond to multiple challenges of HDL management and human–large carnivore coexistence. Success in mainstreaming this coexistence in HDL will rest on the ability to think and act cooperatively. Such a conservation achievement, if realized, stands to have far-reaching benefits for people and biodiversity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号